Study Comparing the Advantages of Proximal Femoral Nail Over Dynamic Hip Screw Among Patients with Subtrochanteric Fractures

Shishir Murugharaj Suranigi¹, Naresh Shetty², Harshad Mohan Shah²

Introduction
Subtrochanteric fractures are one of the common fractures encountered in today's orthopaedic practice. The incidence of subtrochanteric femoral fractures has increased significantly during recent decades, and this tendency will probably continue in the near future owing to the considerable increase in the life expectancy leading to an increasing geriatric population. Many treatment options are available. The goal of the treatment of these fractures is stable fixation, which allows early mobilisation of the patient. The advantages and disadvantages of the original design of the Gamma nail have been well established in several studies done in the past, usually by comparing the results with the Dynamic hip screw (DHS). In this context and this tendency will probably continue in the near future owing to the considerable increase in the life expectancy leading to an increasing geriatric population. Many treatment options are available. The goal of the treatment of these fractures is stable fixation, which allows early mobilisation of the patient. The advantages and disadvantages of the original design of the Gamma nail have been well established in several studies done in the past, usually by comparing the results with the Dynamic hip screw (DHS). In this context there is inadequate data available about an alternative, the proximal femoral nail (PFN), and its merits in the management of subtrochanteric fractures. The present study was done to compare the advantages and disadvantages of proximal femoral nail over dynamic hip screw among patients with subtrochanteric fracture.

Aims and Objectives
The main aim of this dissertation was to:
1) Study the different types of subtrochanteric fractures.
2) Study the principles and management of subtrochanteric fractures.

Methods: This study was conducted in M. S. Ramaiah Hospitals from October 2007 to August 2009. During this period 50 cases of adult patients with subtrochanteric fractures of femur were selected according to the inclusion criteria and classified according to Seinsheimer’s classification. Results: We found that PFN was superior to DHS in many ways such as reduced intra-operative blood loss, lesser operative time, reduced radiation exposure, less amount of limb shortening, reduced hospital stay, lesser infection rates and early mobilization.

Conclusion: Nailing has the advantage of providing rotational as well as axial stability in cases of subtrochanteric fractures allowing a faster postoperative restoration of walking ability, when compared with the dynamic hip screw.

Key Words: Subtrochanteric fractures; Proximal Femoral Nailing ; Dynamic Hip screw, Reverse oblique subtrochanteric fractures.
operative radiation exposure

1. Intra-operative blood loss, duration of surgery and intra-operative radiation exposure.
2. Duration from the day of surgery to mobilization.
3. Infection rates.
4. Duration of stay at hospital.
5. Implant failure rates.
6. Union rates.
7. Return to normal function.
8. Residual disability or deformity.
iv) Assessment of results based on subjective parameters, objective parameters and radiological findings.
In this study, an attempt has been made to review the literature and compare our results with other studies.

Methods
This was a prospective randomized study conducted in M. S. Ramaiah Hospitals from October 2007 to August 2009. During this period, 50 cases of adult patients with subtrochanteric fractures of femur were selected according to the inclusion criteria. Alternate patients who fulfilled the inclusion and exclusion criteria underwent PFN and DHS respectively.

INCLUSION CRITERIA
a) Age: >18 yrs
b) Sex: Both sexes
c) All types of subtrochanteric fractures treated with proximal femoral nail or Dynamic hip screw.
d) No specific duration of illness.

EXCLUSION CRITERIA
a) Previous surgery of the proximal femur.
b) Pathologic fractures other than osteoporosis.
c) Ongoing chemotherapy or irradiation treatment due to malignancy.
d) Polytrauma.
e) Individuals who were unable to give consent.

Results
The fractures were classified according to Seinsheimer's classification. Type IIIA constituted maximum number of cases (n=20) with 12 in PFN group and 8 in DHS group; followed by Type IV (n=08) with 2 in PFN group and 6 in DHS group. Rest of 22 patients belonged to Type II A (n=02), Type II B (n=05), Type II C (n=05), Type III B (n=05) and Type V (n=05). There were no Type I pattern of fractures in our study. Out of the 50 patients, 26 of them underwent fixation with Proximal Femoral nailing and rest 24 of them were treated with DHS irrespective of their fracture pattern. Out of the 50 patients, 48 patients were available for follow-up. In our series maximum age was 96 years and minimum of 18 years (mean age = 62.36 years). Maximum patients were belonging to the 60-80 years age group (n=19). Males were 37 and females 13. Right side was affected in 24 cases and left in 26 cases. The most common mode of injury in our series were trivial fall (n=35), Road Traffic Accidents (RTA) accounting for 13 cases and followed by fall from height in 2 cases. All patients were treated on elective basis. Surgery was performed on average of 3 days with a range of 1-11 days. The average time taken for DHS procedure was 124.58 minutes as compared to PFN which was 102.3 minutes. The average duration of radiation exposure was 56.35 seconds for nailing as compared to 96.25 seconds for DHS procedure. The average amount of blood loss was 208.7 ml for PFN procedure and 483.33 ml for DHS procedure. In PFN Series, Postero-Medial cortical defect was seen in 4 cases for which iliac cancellous bone grafting was done whereas bone grafting was required in 10 cases of DHS Series. The intra-operative complications encountered during proximal femoral nailing are as follows:
1. Jamming of the nail in the proximal fragment while insertion was noted in one case, requiring progressive reaming of the proximal fragment and the use of a lesser diameter nail.
2. In one case, we had to do 'free hand technique' for distal screw locking due to mismatch of the Jig and nail.
3. In one case, fixation of the fracture occurred in varus angulation.
4. In one case, iatrogenic fracture of the lateral cortex of the proximal fragment was noted, which was minimally displaced. No intervention was done for that fracture. Weight bearing was delayed post-operatively.
5. In six of our cases we had to perform open reduction, due to wide displacement of the fragments.
6. In one case, with delay in surgery of 11 days was noted as the patient was not fit to be taken up for surgery. We had difficulty in reduction of the fracture in this patient, so the fracture site had to be opened up for reduction. These were commonly seen in Type IV, V fractures and in obese individuals. No intra-operative complications were encountered during DHS procedure. In our DHS series, we had a case of wound infection at the operative site which required intravenous antibiotics for a period of 3 weeks. Wound healed without the need for any further intervention. No post-operative complications were seen in PFN series. The average time taken for mobilization from the time of surgery for PFN series was 1.5 days and for DHS series was 2.12 days. The average duration of hospital stay following surgery was 7.9 days ranging from 5-14 days in the PFN series and 12.04 days ranging from 5-20 days in the DHS series. There was no mortality in this study. The average duration of follow up was 15 months ranging from 5-26 months, of which 2 patients were lost to follow up, one in DHS series and other in PFN series. Both the patients were lost during the 2nd month of follow up. In PFN series, out of the 26 cases, 10 cases showed union at 12 weeks, 7 cases showed union at 14 weeks duration, 4 cases showed union at 18 weeks duration, 4 cases of delayed union were seen. 2 cases of delayed union required dynamization which were followed up till bony union, which took 7 months and 8 months respectively. Two other cases required bone grafting at the fracture site, which united at 6 months and 7 months respectively. One case of breakage of implant in situ at 5 months was noticed. Patient had broken the implant after a fall at home. It was treated with implant removal and re-nailing with PFN and bone grafting. Fracture united after a delay of 18 weeks of re-nailing. In DHS series, out of the 24 cases, 8 cases showed union at 12 weeks duration, 6 cases showed union at 14 weeks duration, 3 cases showed union at 18 weeks duration, 3 cases of delayed union were seen, for which bone grafting at the
fracture site was done at 8 weeks, 10 weeks and 12 weeks. Fracture subsequently united after 10 weeks, 10 weeks and 14 weeks respectively from the time of bone grafting. Three cases of breakage of implant in situ were noticed at 12 weeks, 20 weeks and 25 weeks. Two of which were treated by implant removal and repeat DHS application with bone grafting. They united after 14 weeks and 16 weeks respectively. Other case was treated by implant removal and nailing with gamma nail and bone grafting, which united after 20 weeks from the second surgery. Bony union was achieved in 24 out of the 26 cases (92.3%) in PFN series as compared to 20 out 24 cases (83.33%) in DHS series. 69.33% of the cases had good results in PFN series as compared to 70.8% in DHS series.

Conclusion

In our series we found that PFN was superior to DHS in many ways such as reduced intra-operative blood loss, lesser operative time, reduced radiation exposure, less amount of shortening, reduced hospital stay, lesser infection rates and early mobilization. We have concluded that all reverse oblique fractures are to be managed by PFN only as the chances of failure of fixation are very high with extra-medullary devices.

Clinical Message

Nailing has the advantage of providing rotational as well as axial stability in cases of sub-trochanteric fractures allowing a faster postoperative restoration of walking ability, when compared with the DHS. The nails are load-sharing implants, whereas extra-medullary devices are load-bearing. Proximal femoral nailing creates a shorter lever arm, which translates to a lower bending moment and a decreased rate of mechanical failure.

Key Words

Subtrochanteric fractures; Proximal Femoral Nail; Dynamic Hip screw; reverse oblique subtrochanteric fractures.

Bibliography

4. ‘The association of age, race and sex with the location of proximal femoral fractures in elderly’, JBJS 1993; 75(5), 752-9.
17. Philip J. Radford, Maurice needoff. John k Webb" a prospective randomized comparison of the dynamic hip screw and the gamma locking nail” JBJS, 1993; 75(B) 789-793.
18. Martyn J. Parker “a new mobility score for predicting mortality after hip fracture” JBJS, 1993; 75(B); 797-799.
30. Pajarien J, " pertrochanteric femoral fractures treated with a dynamic hip screw or a proximal femoral nail. A randomized study comparing post operative
rehabilitation” JBJS (Br) 2005, 87(1); 76-81.
45.Mohamed M N, Harrington J, Heam TC. “Biochemical analysis of Medoff’s sliding plate” J Trauma 2000; 48(1); 93-100.
47.Mc Kibbin B. The Biology of fracture healing in long bones. JBJS(Br)1978; 60; 150-62.

Conflict of Interest: Nil
Source of Support: None

How to Cite this Article: